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Résumé

1 Introduction

A la suite des travaux de Belyi, Groethendick savait quun groupe de Galois (le groupe des
automorphismes de corps de L laissant K invariant point par point) agissait sur les revétements de
la sphere de Rieémann. Ayant compris qu'un tel revétement pouvait étre décrit par le graphe issu
du relevement d’une certaine configuration de lacets, il écrivit dans Esquisses d’un programme :

Citation 1. "Cette découverte, qui techniquement se réduit a si peu de choses, a fait sur moi
une impression trés forte, et elle représente un tournant décisif dans le cours de mes réflexions, un
déplacement notamment de mon centre d’intérét en mathématique, qui soudain s’est trouvé fortement
localisé. Je ne crois pas qu’un fait mathématique m’ait jamais autant frappé que celui-la, et ait
eu un tmpact psychologique comparable. Cela tient sirement a la nature tellement familiére, non
technique, des objets considérés, dont tout dessin d’enfant griffonné sur un bout de papier (pour peu
que le graphisme soit d’un seul tenant) donne un exemple parfaitement explicite. A un tel dessin
se trouvent associés des invariants arithmétiques subtils, qui seront chamboulés complétement dés
qu’on y rajoute un trait de plus."

C’est ainsi que la notion de dessin d’enfant émergea.

Définition 1. Un dessin d’enfant est un graphe abstrait connexe muni d’une structure bipartite
sur ses sommets et d’un ordre cyclique des arétes concourantes en un méme sommet.

Son ensemble des sommets peut étre décomposé en union disjointe de deux sous-ensembles B
et N de maniére a ce que chaque aréte ait un seul sommet de chaque sous-ensemble. On pourrait
colorier les sommets appartenant a B en blanc, et les arétes appartenant a N en noir. Une aréte
aurait, donc, un sommet blanc et un sommet noir.
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FIGURE 1 — Dessins d’enfant

2 Concepts

Avant de comprendre le coeur du travail de Grothendieck il est important de maitriser les concepts
fondateurs de ses théories. Commencgons par expliquer les corps et les extensions de corps.



2.1 Corps et extensions

Définition 2. Soient K un corps et L un autre corps. On dit que L est une extension de corps de
K si K est un sous-corps de L. On note alors I'extension L/K.

Autrement dit, tous les éléments de K sont dans L, et les opérations d’addition, de multiplication
et de passage a I'inverse dans K sont les mémes que celles de L.

Définition 3. Soit L/K une extension de corps et soit @ € L. On dit que « est algébrique sur K
§’il existe un polynéme non nul P € K[X] tel que P(a) = 0.

Si tous les éléments de L sont algébriques sur K, on dit que 'extension L/K est une extension
algébrique.

Définition 4. Soit L/K une extension de corps. Le degré de extension, noté [L : K], est la
dimension du K-espace vectoriel L. Autrement dit,

[L: K] =dimg L.
Si ce nombre est fini, on dit que I'extension est finie.

Exemple 1. Par exemple, C est une extension algébrique de R de degré 2 puisque
dimrC=2 et C={a+iba,beR,i¢R}

et que 7 est solution du polynéme & coefficients dans R : X2 + 1
On peut le voir autrement en disant que le plus petit corps qui contienne i et R est C.

Remarque. Le corps Q est I'extension algébrique > de Q. Ce corps est encore méconnu : bien qu’on
arrive & le définir formellement (par exemple, 7 ¢ Q), on ne sait pas le décrire explicitement.

Nous allons maintenant évoquer deux notions complexes utilisées pour définir le groupe de Galois.

Définition 5. Soient K un corps commutatif et L son extension algébrique. Une cléoture algébrique
de K est une extension algébrique de K algébriquement close, soit dont tous les polynomes de degré
supérieur ou égal & un, a coefficients dans L, admettent au moins une racine dans L.

Définition 6. Soit K un corps commutatif. Une cloture séparable de K est une extension algébrique
séparable (pas forcément finie) de K, qui est séparablement close, notée K sep, c’est-a-dire que toute
extension finie séparable de K est égale a K.

Remarque. Autrement dit : L est la plus petite extension de K qui contient toutes les racines des
polyndmes séparables a coefficients dans K.

Exemple 2. Prenons K = F,(t) le corps des fractions, soit I’ensemble des fractions %, ou P(t) et

Q(t) sont des polynoémes dans F},[t] et Q # 0. Maintenant considérons le polynéme X2 —t € K[X].
Ce polynome est séparable car sa dérivée est non nulle, (X?)/ = 2X, donc il ne posséde pas de

racine multiple dans une cléture algébrique. La cléture séparable de K contiendra les racines de f,
cest-a-dire vt et —/t.

2.2 Groupe de Galois

Maintenant que vous avez compris ce que sont les extensions de corps, nous allons rentrer dans
I'aspect géométrique de ces notions avec le fameux groupe de Galois.

Définition 7. Soit L et K deux corps commutatifs. Le groupe de Galois Gal(L/K) d’une extension
algébrique de L sur K est le groupe des automorphismes de corps de L laissant K invariant point
par point.



Exemple 3.
Gal(C/R)=o01:2+— 2 02:2—7Z

En effet, les deux seules applications sur C laissant R invariant sont I'identité et la conjugaison. Dans
les deux cas les deux réels a et b ne sont pas modifiés. On peut voir le lien avec les deux solutions
du polynéme X2 +1 : 4 et —i.

Remarque. Ces applications sont exactement définies par permutation des racines du polyndéme
X2 41 : en prenant i, Iapplication devient I'identité, soit aucun changement, car j’envoie i sur —i
(et réciproquement), ce qui correspond exactement a la conjugaison complexe.

Définition 8. Soit K un corps commutatif. le groupe de Galois absolu de K est le groupe de Galois
d’une cloture séparable de ce corps K. On le note Gal(Ksep/K).

Remarque. Le groupe de Galois normal agit sur les extensions algébriques alors que le groupe
de Galois absolu sur les extensions séparables, qui sont aussi algébriques. Cela induit des groupes
infinis, ¢’est le cas de Gal(Q/Q).

Définition 9. Soit K un corps et L une extension du corps K. L’action de Galois est le "déplace-
ment" des éléments de L via les applications appartenant au groupe de Galois Gal(L/K), soit en
préservant la structure algébrique de L.

Exemple 4. L’application de o1 et oo aux éléments de C est une action de Galois.

2.3 Les revétements

Afin de comprendre au mieux les revétements, nous allons d’abord aborder la notion d’homéo-
morphisme.

Définition 10. Un homéomorphisme est une application bijective continue, d’un espace topologique
dans un autre, dont la bijection réciproque est continue. Dans ce cas, les deux espaces topologiques
sont, dits homéomorphes.

Définition 11. Soit VO des ouverts de E un corps, et B un corps. Le revétement étale est une
application p, continue, locale et surjective telle que tout point de B appartienne & un ouvert U
de manieére a ce que l'image réciproque de U par p soit une union disjointe d’ouverts de F, chacun
homéomorphe local a U par p. Autrement dit :

p:E—B
zeB = xecU p'(U)=]]V
i
Remarque. Tout revétement est un homéomorphisme local.

Définition 12. Un revétement ramifié est un revétement qui peut avoir des points critiques ou
I’application n’est pas localement bijective.

Remarque. Un point de ramification, ou une valeur critique de f, est la valeur de f en un zéro de
la dérivée f1.

2.4 Topologie et espaces projectifs

Définition 13. Soient K un corps et E un K-espace vectoriel de dimension finie. L’espace projectif
est 'ensemble des droites vectorielles de F, noté P(E), c’est-a-dire I’ensemble des sous-espaces de
dimension 1 de E. Un élément de P(E) est appelé un point. Par convention, si E est de dimension
n, on dit que la dimension de P(E) est n — 1.



Remarque. Si K est fini et si E est de dimension finie, P(E) est fini

Définition 14. La sphere projective est I’espace projectif réel de dimension 2. Elle est définie comme
étant 1'ensemble des droites vectorielles de R® passant par 1'origine.

Exemple 5. Dans le cas de R? la sphére projective est I’ensemble des directions de R, z, y et 2
avec des antipodes, les points [z,y, z] et [—x, —y, —z] , représentant le méme point et formant ainsi
une sphere.

Définition 15. Une wvariété algébrique est I’ensemble des solutions communes d’un nombre fini
d’équations polynomiales en plusieurs variables, muni d’une structure géométrique naturelle.

Définition 16. Soit K un corps, en géométrie algébrique, une courbe algébrique sur K est une
variété algébrique de dimension 1 définie sur K. Cela signifie qu’elle est décrite par des équations
polynomiales, et qu’elle est, du point de vue géométrique, « de dimension 1 » (elle ressemble & une
ligne).

Définition 17. Une courbe projective lisse est une courbe algébrique.

Définition 18. Une surface de Riemann est une variété complexe de dimension 1, c’est-a-dire un
espace topologique localement homéomorphe a C et muni d’une structure holomorphe.

Définition 19. La sphére de Riemann est une manieére de prolonger le plan des nombres complexes
avec un point additionnel a I'infini, de maniére que certaines expressions mathématiques deviennent
convergentes et élégantes, du moins dans certains contextes. Ce plan s’appelle également la droite
projective complexe, dénoté P1(C).

FI1GURE 2 — Sphéere de Rieman

Remarque. La sphere projective et la sphére de Riemann sont bien deux notions distinctes. Si elles
sont toutes les deux appelées spheres :
— la sphere projective est réelle, soit liée & R, notée P?(R)
— la sphere de Riemann est une représentation géométrique de la droite projective complexe
P1(C), donc liée & C. ,

3 Des travaux de Belyi jusqu’aux dessins d’enfants

3.1 Le théoréme de Belyi

Définition 20. Soit C' une courbe lisse projective et géométriquement connexe. Une fonction de
Belyi est une fonction algébrique f : C' — P!, non ramifiée en dehors de {0, 1, co}.

Remarque. La paire (C, f) est appelée paire de Belyi.

Définition 21. Deux paires de Belyi (C1, f1) et (Cq, f2) sont dites isomorphes s’il existe un iso-
morphisme i : C7 — C5 tel que f1 = fyo1.

Théoréme 1. Soit C' une courbe lisse projective et géométriquement connexe, définie sur Q. Alors
il existe une fonction de Belyi f : C — P! qui est un revétement ramifié de la sphére de Riemann.



3.2 Dessins d’enfants

Il nous reste & appliquer ce théoréme a I'un des objets principaux du travail de Grothendieck :
les dessins d’enfants.

Définition 22. Les dessins d’enfants sont des revétements ramifiés de la sphére projective P1(C)
ramifiés au-dessus de {0, 1, c0}.
Il est aussi possible de voir un dessin d’enfant comme une classe d’isomorphisme de paires de Belyi.

3.3 Fonction de Belyi et les dessins d’enfants

Exemple 6. Soit f(z) = 22 une fonction de Belyi. Tous les sommets noirs (points critiques) sont des
racines de 1’équation f(x) = 0, la multiplicité de chaque racine est égale au degré du sommet. 2% = 0
Alors le sommet noir a le degré 3. Tous les sommets blancs (points « simples » (non-critiques)) sont
des racines de 1’équation f (x) = 1. L’image réciproque f~1(1) se compose de 3 racines de 1'unité. Il
est clair que f71([0,1]) est une figure montrée en bas.

FIGURE 3 — Dessins d’enfant

Il est également possible de passer d’un dessin d’enfant & une fonction de Belyi.

4 Applications des dessins d’enfants

4.1 La théorie de Galois inverse et les dessins d’enfants

Théoréme 2. La théorie partielle de Galois inverse est une branche de la théorie de Galois. On
part d’une extension Gal(L/K) et on calcule son groupe de Galois. La théorie de Galois inverse
consiste a faire le chemin inverse : on part d’un groupe G et on veut construire une extension
ayant ce groupe comme groupe de Galois. Ainsi il est conjecturé que tout groupe fini G est réalisable
comme groupe de Galois d’une extension galoisienne de Q

Malgré d’importants progres durant les trente dernieres années du XX¢ siecle et un grand nombre
de résultats établis, la théorie reste une vaste conjecture. Ce probleme est ouvert, mais il est possible
d’en résoudre des cas particuliers en construisant des dessins d’enfants définis sur Q.

Démonstration par étapes :

1. Construction combinatoire : on construit un dessin d’enfant D dont le groupe d’automor-
phismes est isomorphe a G.

2. Passage a la géométrie algébrique : Par le théoréme de Belyi (réciproque), ce dessin corres-

pond & une courbe algébrique lisse projective X définie sur Q et & un morphisme de Belyi f :
X — P! ramifié uniquement en {0, 1, 00}.



3. Extension de corps de fonctions et résultat géométrique : Le revétement f induit une exten-
sion de corps de fonctions : Q(X)/Q(¢) dont le groupe de Galois est isomorphe & G. Q(t) étant
I’ensemble des corps de fractions rationnelles sur Q
Ainsi tout groupe fini G est réalisable comme groupe de Galois d'une extension de Q(¥)

On constate ici que les dessins d’enfants permettent de résoudre Galois inverse sur Q(¢) mais
non sur Q.

Exemple 7. : Groupe Galois inverse sur Ss

Nous illustrons la méthode précédente sur le groupe symétrique S3 de cardinal 6. Un groupe
symétrique, ici, désigne I’ensemble des permutations d’un ensemble & 3 éléments.

Construction combinatoire : le groupe S3 admet un groupe de présentation comme groupe en-
gendré par de présentation :

oo = (12), 09 = (123)
satisfaisant
o8 =0p = (0p01)? =1
On obtient alors un dessin d’enfant & 2 sommets noirs (cycles de o¢) et 3 sommets blancs (cycles de

o1). On a alors une triangulation de la sphére et son groupe d’automorphismes combinatoires est
isomorphe a Ss.

Passage a la géométrie algébrique : d’aprés le théoréme de Belyi (réciproque), ce dessin d’enfants

correspond & : une courbe algébrique lisse projective X définie sur Q un morphisme fini f : X — P!
ramifié uniquement en {0, 1, 00}.
On a alors I’application de Belyi :

fa) = (2* = 1)°/a*(2® — 9)

Extension de corps de fonctions et résultats géométrique : Le morphisme f induit une extension
de corps de fonctions
Q(x)/Q(f(x)), qui est une extension de degré 6 (nombre de permutations). On obtient alors :

Gal(Q(z)/Q(f(x)) = Ss

On a donc le groupe S5 réalisable comme groupe de Galois d’une extension galoisienne de Q(t).
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